Crystal and Molecular Structure of Tetrakiscyclopentadienylzirconium

By V. I. Kulishov, E. M. Brainina, N. G. Bokiy,* and Yu. T. Struchkov
(Institute of Elemento-Organic Compounds, Academy of Sciences of the U.S.S.R., Vavilova 28, Moscow)

Summary In the crystal form of tetrakiscyclopentadienylzirconium, three cyclopentadienyl rings are π-bonded at a mean $\mathrm{Zr}-\mathrm{C}$ distance of $2.64 \AA$, the fourth ring being σ-bonded with a $\mathrm{Zr}-\mathrm{C}$ distance of $2 \cdot 47 \AA$.

The structures of tetrakiscyclopentadienyl derivatives of zirconium and hafnium cannot be considered as reliably known. Thus the ${ }^{1} \mathrm{H}$ n.m.r. spectra, ${ }^{1}$ with one singlet signal, testify to the equivalence of all four $\mathrm{C}_{5} \mathrm{H}_{5}$ rings in these compounds, whereas their i.r. spectra ${ }^{1}$ reveal a distortion of the metal atom co-ordination from tetrahedral local symmetry. Spectral data alone, therefore, are not sufficient for one to draw definite conclusions on either the bonding or the equivalence (or nonequivalence) of the $\mathrm{C}_{5} \mathrm{H}_{5}$ rings. ${ }^{1,2}$ We now report results of an X-ray study of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Zr}$. Crystals of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Zr}$ are orthorhombic, with $a=20.83, b=8.53, \quad c=8.77 \AA ; D_{\mathrm{m}}=1.50 \mathrm{~g} . \mathrm{cm}^{-3}$; $Z=4$; space group $P 2_{1} 2_{1} 2_{1}$. The structure was solved by the usual heavy-atom method on the basis of 580 independent reflections (Weissenberg goniometer; unfiltered Cu radiation; visual estimation of intensities). The refinement was accomplished by a full-matrix least-squares method in isotropic approximation to $R=0.083$. The standard deviations are $\mathrm{Zr}-\mathrm{C}, 0.02 ; \mathrm{C}-\mathrm{C}, 0.04 \AA ; \mathrm{C}-\mathrm{Zr}-\mathrm{C}$, 1.0°; C-C-C, $2 \cdot 0^{\circ}$.

The molecular geometry is shown in the Figure. The $\mathrm{Zr}-\mathrm{C}$ distances for three cyclopentadienyl rings, A, B, and C , vary randomly in the range $2.49-2.73 \AA$, showing that these rings are π-bonded with the zirconium atom or form a "central σ-bond"' 2,3 with it. The average $\mathrm{Zr}-\mathrm{C} \pi$-bonded distance, $2 \cdot 6_{\mathbf{4}} \AA$, is somewhat longer than corresponding values in three previously studied zirconium cyclopentadienyl derivatives having the same type of cyclopentadienyl co-ordination but fewer such ligands: $2.522 \AA$ in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{-}$ $\mathrm{ZrCl}_{2},{ }^{4} 2.55$ or $2.53 \AA$ in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Zr}(\mathrm{acac})_{2} \mathrm{Cl}, 5,62.53 \AA$ in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Zr}\left(\mathrm{CF}_{3} \cdot \mathrm{CO} \cdot \mathrm{CHCO} \cdot \mathrm{CF}_{3}\right)_{3} .{ }^{7}$

On the other hand, the fourth cyclopentadienyl ring, D , forms a localized two-centre bond ($2 \cdot 47 \AA$) with the zirconium atom. This bond is not coplanar with the mean plane of the planar D ring, but is inclined to it at an angle of 52°. A similar tilt has been found in other σ-cyclopentadienyl derivatives, e.g. $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{NO})\left(\sigma-\mathrm{C}_{5} \mathrm{H}_{5}\right)^{8}$ and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2} \mathrm{Sn}\left(\sigma-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} .{ }^{9}$

The C-C bond length in the symmetrically bonded $\mathrm{C}_{5} \mathrm{H}_{5}$ rings varies randomly in the range $1.31-1.54 \AA$, but the average value ($1 \cdot 45 \AA$) is normal for π-bonded $\mathrm{C}_{5} \mathrm{H}_{5}$ ligands. In the σ-bonded ring there are two $\mathrm{C}-\mathrm{C}$ bonds of 1.57 and
$1.58 \AA$, respectively; the three other bonds have intermediate lengths. The zirconium atom co-ordination is very close to that found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{UCl}$, where the chlorine atom acts as a σ-bonded ligand. The angles MZrM^{\prime} (M and M^{\prime} denote the centres of π-bonded $\mathrm{C}_{5} \mathrm{H}_{5}$ rings) are 116, 117, and 119°; the angles MZrC (σ-bonded) are 104, 96, and 98°. The corresponding angles $\mathrm{MUM}^{\prime}\left(117^{\circ}\right)$ and $\mathrm{MUCl}\left(101^{\circ}\right)$ (average values) are similar.

Figure
The molecular structure found in crystalline $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Zr}$, with three π-bonded (or central σ-bonded) and one σ bonded $\mathrm{C}_{5} \mathrm{H}_{5}$ rings therefore represents a new type of tetrakiscyclopentadienyl transition-metal derivative. A co-ordination of this type had been predicted as a possibility from a quantum-chemical study of metal-ring interactions. ${ }^{2}$ The effective equivalence of all four $\mathrm{C}_{5} \mathrm{H}_{5}$ rings inferred from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum may be attributed to rapid valence tautomerism.

The X-ray study of tetrakiscyclopentadienylhafnium is now being carried out. Its crystals are tetragonal, $a=9 \cdot 80$, $c=8.22 \AA ; Z=2$; possible space groups $P 42_{1} m, P 42_{1} 2$, and $P 4_{2} 2_{1} 2$. The symmetry of the two-fold special positions in these space groups ($\mathrm{mm}, 4$, or 222) shows that, contrary to the situation in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Zr}$, all four $\mathrm{C}_{5} \mathrm{H}_{5}$ rings are equivalent.

We thank Mr. V. G. Andrianov for his help in solving the $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Zr}$ crystal structure.
(Received, February 16th, 1970; Com. 220.)
${ }^{1}$ E. M. Brainina, M. Kh. Minacheva, B. V. Lokshin, E. I. Fedin, and P. V. Petrovskii, Izvest. Akad. Nauk S.S.S.R., Ser. khim., 1969, 2492.
${ }_{2}^{2}$ D. A. Bochvar, N. P. Gambaryan, E. M. Brainina, and R. Kh. Freidlina, Doklady Akad. Nauk S.S.S.R., 1968, 183, 1324.
${ }^{3}$ H. P. Fritz, Adv. Organometallic Chem., 1964, 1, 239.
${ }^{4}$ I. A. Ronova, N. V. Alekseev, N. I. Gapotchenko, and Yu. T. Struchkov, J. Organometallic Chem., in the press.
${ }^{5}$ J. Stezowski and A. Eick, J. Amer. Chem. Soc., 1969, 91, 2890.
${ }^{6}$ V. S. Sudarikov, N. G. Bokiy, V. I. Kulishov, and Yu. T. Struchkov, Zhur. strukt. Khim., 1969, 10, 941.
${ }^{7}$ M. Elder, J. G. Evans, and W. A. G. Graham, J. Amer. Chem. Soc., 1969, 91, 1245.
${ }^{8}$ J. L. Calderon, F. A. Cotton, and P. Legzdins, J. Amer. Chem. Soc., 1969, 91, 2528.
${ }^{\circ}$ B. P. Bir'yukov and Yu. T. Struchkov, Zhur. strukt. Khim., 1969, 10, 95.
${ }^{10}$ Chi-hsiang Wong, Tung-mou Yen, and Tseng-yuh Lee, Acta Cryst., 1965, 18, 340.

